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We prove the existence of a phase transition in the quantum Widom–Rowlison

model in two dimension. The case of Boltzmann and Bose statistics are expli-

citly discussed.
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1. INTRODUCTION

In 1971, Ruelle (4) proved the existence of a phase transition for the classical

Widom and Rowlison model. (5) This is the first and, until recently, (3) the

only continuous model for which the existence of a phase transition has

been rigorously proven. In this paper we show that it is possible to extend

Ruelle’s proof to the quantum version of the Widom and Rowlison model.

We will describe in some detail the simpler case of quantum particles

obeying the Boltzmann Statistics and then show how these arguments

apply also to Bose particles.

For sake of definiteness we will consider the two dimensional case.

Higher dimensions can be handled in a similar manner.

As it is well known, Feynmann–Kac formula provides a representation

of the operator exp(−tH) for t > 0 where H is the Hamiltonian of a

system of quantum particles, as a integral of a functional of the potentials



over the sample functions of a Wiener Process. Our work is based on the

application of this formalism to Statistical Mechanics as discussed in

Ginibre. (1)

The model we consider describes a gas of two kind of particles, say A

and B. The only interaction is a hard-core exclusion between unlike par-

ticles i.e., an A-particle and a B-particle cannot be closer than a distance R,
there is no restriction on the distance between two A or two B-particles. If

the activity of the two kinds of particles are set equal to z, where z=z/b, b
is the inverse temperature and m=1

b logz the chemical potential, when z is
sufficiently large, one expects at least two coexisting phases: one predomi-

nantly of A-particles and another predominantly of B-particles.

In the classical case, Ruelle uses a suitable modification of the Peierls

argument to prove that is is actually the case.

We briefly summarize the main steps of Ruelle’s proof:

a) The volume L containing the particles is considered as composed of

N little boxes of size smaller that R, the hard core range.
b) Each box, due to the hard core condition, can contain only alike

particles, so that shading the boxes occupied by one kind of particles, say B-

particles, it is possible to make a partition of the set of microscopic con-

figurations into subsets corresponding to the possible distribution of the

darker spots on the lattice of the N boxes composing the volume L.

c) Suitable self avoiding contours are defined and their probability is

computed by using the factorization properties of the contributions coming

from compatible contours and the symmetry between A and B-particles.

d) It is then possible to check that, at sufficiently large activities,

Peierls estimate holds.

The difficulty introduced by the quantum nature of the particles is

that, in the Ginibre formulation, (1) a microscopic configuration is not

described any more by a set of points but by a set of random loops. Even

in this case it is possible to define self avoiding contours describing the

B-particles configurations, but the factorization properties do not hold
anymore because the loops associated to A-particles can be arbitrarily
large.

We will show that when the temperature is sufficiently high, since the

loops tend to shrink and, typically, became very small, it is possible to get

an upper bound for the probability of a contour very similar to the classi-

cal one and then use the Peierls argument.

We remark that, both in the classical and the semi-classical case,

z=z/b is the parameter that controls the average density and therefore in
both cases we can get large densities for z fixed (e.g., z< 1 as required by
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Bose statistics for ideal gases) and b sufficiently small. However in the

Boltzmann case, one would expect that the phase transition actualy occurs

for any b provided z is sufficiently large but in our approach we are unable

to prove it.

2. DEFINITION OF THE CONTOURS AND STATEMENTS OF THE

MAIN RESULT

Following Ginibre, (1) the partition function of our model in a finite

volume L … R2 is given by

ZL, b, z — C
.

n1, n2=0

zn1

n1!
zn2

n2!
F
L
n1

dx1 · · · dxn1 D
n1

i=1
Pbxi[dwxi] aL(wxi) F

L
n2

dy1 · · · dyn2

×D
n2

j=1
Pbxj[dwxj] aL(wyj) D

n1, n2

i, j
e−>0

b dt U(wxi(t), wyj(t)) (2.1)

here Pbx(dw) is the constrained Wiener measure (unormalized), where w is a
continuous function from [0, b] to R2, with w(0)=w(b)=x. Remark that
Pbx(dw) is a positive measure but not a probability, since > Pbx(dw)=
(2pb)−1.

aL(w)=3
1, if -t ¥ [0, b], w ¥ L

0, otherwise
(2.2)

and

U(wxi(t), wyj(t))=3
+., if |wxi(t)−wyj(t)| < R

0, otherwise
(2.3)

is the hard core potential. In a more compact notation, we will write

ZL, b, z=F dXL dYL aL(XL) aL(YL) h(XL, YL) (2.4)

where h(XL, YL) is the hard core condition, that is the last factor in (2.1),
and

F dXL — C
.

n1=0

zn1

n1!
F
L
n1

dx1 · · · dxn D
n1

i=1
Pbxi[dwxi] (2.5)

Given n1, n2, x1, ..., xn1, y1, ..., yn2 a configuration

wL — (wAL, w
B
L) (2.6)
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is a set of closed trajectories wAx1, ..., wAxn1, w
B
y1, ..., wByn2 compatible with the

hard core condition and fully contained in L.

Following Ruelle, (4) we assume that L is such that we can make a par-

tition of L in boxes D of side d=R/3`2 and given a configuration wL,

for each wByi(t) we consider the boxes visited by the trajectory and shade the
3d×3d squares centered around them.

The boundary of the union of the shaded areas is a contour C, i.e., a

polygonal consisting of various connected components. We decompose C

as an union of disjoint pieces c1, ..., cn. Each piece is a R-connected com-
ponent, that is the smallest set of connected components of C such that if

two connected components have a distance less than R, they belong to the
same ci.

We introduce the boundary condition that non B-trajectory is allowed
to reach the last two rows and columns adjacent to the sides of L.

We will consider an external contour c, i.e., we can construct a conti-

nuous path in R2 coming from infinity that reaches a point of c without

crossing C.

If we call 1(XL, YL; c) the indicator function of the configurations
giving rise to c as an external contour, then the grand canonical probability

of the contour c is

mL, b, z(c) —
1

ZL, b, z
F dXL F dYL aL(XL) agL(YL) h(XL, YL) 1(XL, YL; c)

—
ZL, b, z(c)

ZL, b, z
(2.7)

where agL(YL) takes into account the boundary conditions.
Our main result is

Theorem 2.1. There exists a b0 such that for all L, for all b< b0,
and for all z> 0

mL, b, z(c) [ e−z |c| (d
2/64pb) (2.8)

here |c| d is the length of the polygonal c.

The proof of the existence of a phase transition is now almost identical

to the one of the classical case and for sake of completness is given in

Appendix 2.

Remark. In the theorem z and b are independant parameters and we

need only a condition on b to prove it. On the other hand, the relevant
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parameter to prove the existence of a phase transition (cf. Appendix 2) is

z/b and therefore in that case we will get a b0(z).

Remark. If we notice that the dimensionless parameter that controls

our estimates is d/`b=R/(3`2b ) ± 1, our result is obvious from a

physical point of view: the classical estimate holds when the de Broglie

thermal wavelength is much smaller than the range of the potential.

3. THE PROOF

We start describing the heuristics of the proof. It follows from the

shading procedure and the definition of a R-connected external contour
that in presence of a c external contour the B-trajectories are strictly con-
tained in two disconnected regions C1 and C2, where C1 is the region
internal to c and C2 is the region outside c, where the B-particles can travel
without producing contours closer than R to c. Therefore

ZL, b, z(c)=F dXL aL(XL) F dYC2 ã
g
C2(YC2) F dYC1 ãC1(YC1) h(XL, YC1 2 YC2)

(3.1)

where agC2(YC2) and ãC1(YC1) take into account the external boundary condi-
tions and the extra constraints that c exists and is an external component,

i.e., all B-trajectories outside c cannot get closer than d to the boundary of
C2 and B-trajectories inside c have to shade at least the band touching the
internal boundary of the contour.

If we set

ZB
1 — F dXC−1 dYC1 aC−1 (XC−1 ) ãC1(YC1) h(XC−1 , YC1) (3.2)

ZA
1 — F dYC−1 dXC1 aC−1 (YC−1 ) ãC1(XC1) h(YC−1 , XC1) (3.3)

where C−
1 is the region (if any) internal to c at a distance larger than R

from c.

ZA
2 — F dXC2 dYC2 aC2(XC2) a

g
C2(YC2) h(XC2, YC2) (3.4)

and, calling G the band outside c made of little squares which have one side
or corner on c,

Z̃A
G — F dXG aG(XG)=exp 1z FG dx Pbx[dwx] aG(wx)2 (3.5)
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(the last equality follows from the fact that the A-trajectories are indepen-
dent), we get

ZL, b, z \ ZA
1Z

A
2 Z̃

A
G (3.6)

since the A-trajectories inside G are at distance larger that R from all

B-trajectories contained in ZA
1 and ZA

2 .

Now if we ignore

1) The A-trajectories starting in C−
1 (resp. C2) that do cross the

boundary of C−
1 (resp. C2).

2) All the trajectories starting in L 0 (C−
1 2 C2).

Formula (3.1) becomes

ZL, b, z(c)=ZB
1Z

A
2 (3.7)

and since by symmetry ZA
1=ZB

1 , we get

mL, b, z(c) [
1

Z̃A
G

[ exp 1−z FG dx Pbx[dwx] aG(wx)2
[ e−z/8pb |c| d

2
(3.8)

The last inequality follows from the properties of the Wiener trajectories

when b is sufficiently small cf. Appendix 1 Eq. (5.9).

Unfortunately hypothesis 1) and 2) are not true, because the hard core

condition holds only at equals times and for a given generic configuration

of B-trajectories, an A-trajectory can go almost everywhere in L, if it care-
fully avoids the sinchronic approach of the B-trajectories that are present.

In our proof we will show that trajectories described by conditions 1)

and 2) can be neglected for b small enough.

In fact, a property of the conditional Wiener measure is that, for any

d>`2b ,

F Pbx(dw) 1{,t ¥ (0, b) : d(w(t), x) > d} [
e−d

2/2b

2pb
(3.9)

cf. Appendix 1 Eq. (5.7). So that when b is sufficiently small, the proba-

bility for a trajectory starting in C−
1 (resp. C2) to cross the boundary of C−

1

(resp. C2) becomes very small.
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The same argument applies also to a trajectory starting in

L 0 (C−
1 2 C2). In fact, -x ¥ D … L 0 (C−

1 2 C2), ,t
g
x (wB) ¥ [0, b] such that

d(wx(t
g
x), D) > 0. That is a Wiener trajectory, whose end points belong to a

generic little box D contained in L 0 (C−
1 2 C2), cannot stay forever in the

same little box, because sooner or later a B-trajectory (creating the contour
c) will get closer than R.

We start by making a finer partition of L that will allows to define in a

more precise way the subset of the A-trajectories that we are going to
neglect.

Definition 3.1. L(c) is the region in L, outside c, where the B-
particles can travel without producing any contour closer than R to c.

Definition 3.2. C(c) is the region in L, inside c.
Note that the region bounded by an external contour can be decom-

posed in connected components each of which is simply connected.

Definition 3.3. For d> 0, let

G(c, −d) — {x ¥ C(c) : d(x, c) [ d} (3.10)

That is the part of the d-neighborhood of c which is inside C(c).

Definition 3.4.

G(c, d) — {x ¨ C(c) : d(x, c) [ d} (3.11)

That is the part of the d-neighborhood of C which is outside C(c).

To simplify some formulae to come, let us denote

C2 — L(c)

C+
2 — L 0 1C(c) 2 G 1c,

d
222

C−
2 — L 0 (C(c) 2 G(c, d))

C1 — C(c)

C+
1 — C(c) 0 G 1c, −R+

d
22

C−
1 — C(c) 0 G(c, −R)

Existence of a Phase Transition in a Continuous Quantum System 847



C3 — L 0 (C−
1 2 C−

2 )

G+ — G(c, d)

G− — G(c, d) 0 G 1c,
d
22 (3.12)

Note that C−
1 , C+

1 can be empty.

Let D be a region contained in L, we denote

A(D, d) — {wx, x ¥ D : ,t(x) ¥ (0, b), d(wx(t(x)), D) > d} (3.13)

Using these definitions we can now write an upper bound for the numera-

tor of (2.7) in a way that singles out the contributions coming from the

A-trajectories:

i) whose endpoints belong to C−
1 (resp. C−

2 ) but that do cross the

boundaries of C+
1 (resp. C+

2 ).

ii) whose endpoints belong to L 0 (C−
2 2 C−

1 )=C3.

We these notations, we have:

ZL, b, z(c) [ Z̃B
1Z̃

A
2 11+F dXC−2 1{A(C−2 , d/2)}(XC−2 )2

×11+FdXC−1 1{A(C−1 , d/2)}(XC−1 )211+F
D

dXD 1{A(D, d)}(XD)2
2 |C3|/|D|

(3.14)

where

Z̃B
1 — F dYC1 dXC−1 ãC1(YC1) aC+1 (XC−1 ) h(YC1, XC−1 ) (3.15)

and

Z̃A
2 — F dXC−2 dYC2 aC+2 (XC−2 ) agC2(YC2) h(XC−2 , YC2) (3.16)

On the other hand

ZL, b, z \ Z̃A
1 Z̃A

2 Z̃A
G− (3.17)

where Z̃A
G− is defined as in (3.5) and

Z̃A
1 — F dXC1 dYC−1 ãC1(XC1) aC+1 (YC−1 ) h(XC1, YC−1 ) (3.18)
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therefore, we get

mL, b, z(c) [

ez(2 |C3|/|D| >D dx P
b
x[dw] 1{A(D, d)}(w)+>C2− dx P

b
x[dw] 1{A(C2

−, d/2)}(w)+>C1− dx P
b
x[dw] 1{A(C1

−, d/2)}(w))

ez >G− dx P
b
x[dw] aG−(w)

(3.19)

Since, for any d>`2b

F
D

dx Pbx[w] 1A(D, d)(w) [
|“D|

`2pb
e−d

2/2b (3.20)

and

F
G−

dx Pbx[dw] aG−(w) \
|G−|
8pb

(3.21)

cf. Appendix 1, if we note that |“G+|, |“C−
2 |, |“C−

1 |, and |C3 | are all
bounded by a constant times |G−| we get that, for b sufficiently small,

mL, b, z(c) [ e−z |G
−|/16pb (3.22)

since |G−|=|c| d2/4, this entails (2.8).

4. THE BOSE GAS

For identical quantum particles, the grand canonical partition function

(see ref. 1) reads

ZL, b, z= C
.

n1, n2=0
F
L
n1

dx1 · · · dxn1 F
L
n2

dy1 · · · dyn2

×D
n1

l=1
D
n2

m=1
C
.

jl=1
C
.

jm=1
1
z jl

jl
e jl−1P jlbxl [dwAxl]

z jm

jm
e jm−1P jmbym [dwBym] aL(wA, wB)

× D
jl

kl=1
D
jm

km=1
e−>b0 U(wxl(t+(kl−1) b), wym(t+(km−1) b)) dt2 (4.1)

where e=1 for Bosons and e=−1 for Fermions.
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Therefore, in the case of a Bose gas, the measure associated to a

trajectory wz (for z=x, y) is now

C
.

j=1

z j

j
P jbz [dwz] (4.2)

and following without any change, the same steps of the previous section,

we get, for z [ 1

mL, b, z(c) [ e−>G− dx ;
.

j=1 z
j/j Pjbx [dwx] aG−(wx)

[ e−(|c| d
2/64pb) g(z) (4.3)

where g(z) — ;.

j=1 z
j/j2 and therefore we recover a bound similar to (2.8).

Remark. We note that our result makes sense even at z=1. Since
our method works in a similar way in higher dimension and give the same

constraints on z, a corresponding result holds also in 3 and more dimen-

sion, when the Bose condensation takes place for the A free gas. However

this does not imply that the condensation phenomenon is present also in

the Widom–Rowlison model.

In fact in a finite volume L the model make sense for z< ebe0(L) where
e0(L) is the lowest eigenvalue of the Laplace operator with Dirichlet

boundary conditions on L.

Since for |L|=Ln, e0(L)=const./L2 > 0, the critical value is zc=
eb const./L2 > 1 and for any finite volume L, z=1 is strictly below this value.
It follows that, with our estimates, it is impossible to reach the range of

values of z relevant for the description of the condensation phenomenon.

The study of the condensation phenomena for this model is by no means

trivial, see for instance ref. 2.

Remark. In the case of a Fermi gas the weight associated to a

trajectory is not anymore positive definite and some extra work is needed

in order to disentangle the relevant contributions and get the bound.

If we consider the following identity

F dXL aL(XL)=F dXC dXL 0 C aC(XC) aL 0 C(XL 0 C)[1+AC+AL 0 C+ACAL 0 C]

(4.4)

where

AD —
> dXD(1−aD(XD))

dXD aD(XD)
(4.5)
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and remark that > dXD aD(XD) > 0, being the trace of a positive operator,
and that

|AD |=
|> dXD(1−aD(XD))|

> dXD aD(XD)

[ e−(|D|/16pb) gF(z) (4.6)

where gF(z)=;.

j=1 (−1) j−1 z j/j2, it should be possible to preserve the posi-
tivity of the relevant contributions and recover the bound (2.8) even in this

case.

5. APPENDIX 1

In this section we prove (3.20) that is, for any d> `2b and any

volume D

F
D

dx Pbx[w] 1A(D, d)(w) [
|“D|

`2pb
e−d

2/2b (5.1)

where

A(D, d) — {wx : x ¥ D, ,t(x) ¥ (0, b), d(wx(t(x)), D) > d} (5.2)

recall that Pbx[w] is the Wiener measure conditioned to start in x at t=0
and end at x at time b, that is a two dimensional Brownian ‘‘Bridge.’’ We
first note that

A(D, d) … {wx : x ¥ D, ,t(x) ¥ (0, b), d(wx(t(x)), x) > d(x, “D)+d} (5.3)

On the other hand, we note that, by discretizing the interval of time

[0, b], we have, for any r > 0,

F Pbx[dwx] 1{,t(x) ¥ [o, b] : d(wx(tx), x) > r}

=lim
n ‘.

C
n−1

j=1
Pbx 5-i < j, d 1wx 1

ib
n 2, x2< r, d 1wx 1

jb
n 2, x2> r6 (5.4)

To estimate a single term in the previous sum, we write it explicitly,

using the notation,

c(t, x) —
e−||x||

2/2t

2pt
(5.5)
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where x ¥ R2, we have

Pbx 5-i < j, d 1wx 1
ib
n 2, x2< r, d 1wx 1

jb
n 2, x2> r6

=F dy1 · · · dyn−1 1{|yj−x| > r} D
j−1

i=1
1{|yi−x| < r}

×c 1
b

n
, x−y121D

n−2

i=1
c 1
b

n
, yi−yi+122 c 1

b

n
, yn−1−x2

=F dy1 · · · dyj 1{|yj−x > r} D
j−1

i=1
1{|yi−x| < r}

×c 1
b

n
, x−y121D

j−2

i=1
c 1
b

n
, yi−yi+122 c 1b 11−

j
n2, yj−x2

[ c 1b 11−
j
n2, r2 P 5-i < j, :w 1

bi
n 2−x:< r, :w 1

bj
n 2−x:> r6

(5.6)

where the last factor is the standard two dimensional Wiener measure (i.e.,

a probability measure).

Since we have a partition, for all r >`2b, we get

F Pbx[dwx] 1{,t(x) ¥ [o, b] : d(wx(tx), x) > r}

[ max
1 [ j [ n−1

c 1b 11−
j
n2 , r2 [

1
2pb

e−r
2/2b

(5.7)

where the last step follows from a simple computation.

Therefore collecting (5.3), and (5.7) we get

F
D

dx Pbx[w] 1A(D, d)(w) [
1

2pb
e−r

2/2b F
D

dx e−d(x, “D)/2b

[
|“D|

`2pb
e−r

2/2b (5.8)

that is (5.1).

Now we prove (3.21) that is, for b sufficiently small,

F
D

dx Pbx[dw] aD(w) \
|D|
8pb

(5.9)
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Note that for all DŒ … D we have

F
D

dx Pbx[dwx] 1{-t ¥ (o, b); w ¥ D}

\ F
DŒ

dx Pbx(dwx)−F
DŒ

dx Pbx(dwx) 1{-t ¥ (o, b); w ¨ D}

\
|DŒ|
2pb 11−

|“DŒ|
|DŒ|

`2pb e−(d(“D, “DŒ))
2/2b

2 (5.10)

where at the last step we have used (5.8) and an explicit computation for

the first term.

In our case we take DŒ … D such that |DŒ|=|D|/2 and d(“DŒ, “D) \ d/4
and we get (3.21) for b sufficiently small.

6. APPENDIX 2

In this appendix we prove that (2.8) implies that there are at least two

different Gibbs states. Let us recall that we have assumed that L is such

that we can make a partition of L in boxes D of side d=R/3`2. Let us
denote by Ld the set of all such boxes.

For any D ¥ Ld let us denote

B(D) — {(XL, YL), ,wBy ¥ YL, ,t ¥ [0, b] : wBy(t) ¥ D} (6.1)

and

NB(XL, YL) — C
D ¥ Ld

1B(D)(XL, YL) (6.2)

Given a contour c, let Ä(c) be the number of small boxes that are in
the volume whose external boundary is c. We have:

mL, b, z(NB)= C
D ¥ Ld

mL, b, z(1B(D))

[ C
D ¥ Ld

C*
c ¦ D

(c) mL, b, z(c)

[ |Ld | 1C
.

n=3
ne−zn/32pb34n2

2

— |Ld | j̃(z/b) (6.3)
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where ;g
c ¦ D is the sum over all contours such that their internal volume

contains D and j̃(z/b) is a function independent of L that goes to zero
when z/b goes to infinity. The step before the last is a standard computa-
tion for contours on a two dimensional lattice. So that,

mL, b, z(NB)
|Ld |

[ j̃(z/b) (6.4)

that is the mean of the density of the small boxes crossed by B-trajectories
goes to zero, uniformly in L for z/b‘..

To conclude the proof it remains to show that uniformly in L and in

z/b the corresponding mean for the A-trajectories is bounded from below

by a constant, different from 0.

Let T be the total number of small squares visited by at least a trajec-
tory of any kind and define, for a given family of small squares D1, ..., Dk
with Di ] Dj, for 1 [ i < j [ k,

T(D1, ..., Dk) — 3(XL, YL), -w ¥ (XL, YL), -t ¥ [0, b], w(t) ¥ 0
k

i=1
Di,

-1 [ j [ k, ,w, ,y ¥ [0, b] : w(y) ¥ Dj4 (6.5)

and callingV11(D) the square in Ld centered on D with side 11,

S(D1, ..., Dk) — 3(XL,”), -D : D 5 0
k

i=1
V11(Di)=”,

,w : -t ¥ [0, b], w(t) ¥ D

-w, -t ¥ [0, b], w(t) 5 0
k

i=1
V11(Di)=”4 (6.6)

Note that

{T=k}= 0
D1, ..., Dk … Ld

T(D1, ..., Dk) (6.7)

Let us call

Tk — 0
D1, ..., Dk … Ld

T(D1, ..., Dk) 2S(D1, ..., Dk) (6.8)

and note thatTk 5TkŒ=” if k ] kŒ.
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With these notations we have

Zl,b,z \ F dXL dYL h(XL,YL) 1 1 0
|Ld|/242

k=1
Tk2

= C
|Ld|/242

k=1
F dXL dYL h(XL,YL) 1(Tk)

= C
|Ld|/242

k=1
C

D1, ..., Dk … Ld

F dXL dYL h(XL, YL)

×1T(D1, ..., Dk)(XL, YL) 1S(D1, ..., Dk)(XL)

\ C
|Ld|/242

k=1
C

D1, ..., Dk … Ld

F dX1ki=1 Di dY1ki=1 Di h(X1ki=1 Di,Y1ki=1 Di)

×1T(D1, ..., Dk)(X1ki=1 Di, Y1ki=1 Di) D
D ¥ Ld 0 1

k
i=1V11(Di)

F dXD aD(XD) (6.9)

Recalling (5.9), using

:Ld 0 0
k

i=1
V11(Di): \ |Ld |−121k (6.10)

we have for z/b large enough,

D
D ¥ Ld 0 1

k
i=1V11(Di)

F dXD aD(XD) \ (ezd
2/8pb) |Ld|−121k \ 2 (6.11)

therefore using the fact that

Zl, b, z[T=k]

= C
D1, ..., Dk … Ld

F dX1ki=1 Di dY1ki=1 Di h(X1ki=1 Di, Y1ki=1 Di)

×1T(D1, ..., Dk)(X1ki=1 Di, Y1ki=1 Di) (6.12)

we get after a simple computation

ml, b, z 5T [
|Ld |
2426 [

1
2

(6.13)
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Therefore the mean number ml, b, z[T] of small boxes visited by A or B
trajectories satisfies

ml, b, z[T]
|Ld |

=
1

|Ld |
C
.

k=1
ml, b, z[T \ k]

\
1
|Ld |

C
|Ld|/242

k=1
ml, b, z[T \ k]

\
1
242
ml, b, z 5T \

|Ld |
2426

\
1

484
(6.14)

We have already shown that the mean density of small boxes visited

by B-trajectories can be made arbitrarily small (see (6.4)). Now (6.4) and
(6.14) imply that the mean density of small boxes visited by A-trajectories is
bounded from below by a constant uniformly in L and z/b. Now changing
the boundary conditions from A to B will exchange the previous mean

densities which implies that the infinite volume limit Gibbs state is not

unique.
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